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ABSTRACT 

Use of a dual band FPA necessitates an optical system that is capable of imaging both mid wave infrared (MWIR) and 
long wave infrared (LWIR) spectral bands simultaneously.  Such optical system can have up to 10 lenses, (20 surfaces 
that require antireflection (AR) coatings) which, if 95% transmitting in each band, will result in overall throughput of 
just under 60%1.  With 99% transmitting in each band, overall throughput would be just over 90%, a relative 
improvement of 50%.  An earlier paper presented dual band antireflection designs, as well as early fabrication attempts 
on plano Ge, ZnSe, ZnS, AMTIR-1, and CaF2 windows2. This paper presents results of prototype coating fabrication on 
ZnSe, Ge, and BaF2 lenses that comprise a 7 lens set.  The measured performance of the individual elements is used to 
model overall system performance.  The elements were incorporated into an optical assembly and measured overall 
imager performance is analyzed and presented. 
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1. INTRODUCTION 
Refractive optical designs for high performance dual band infrared imagers using a common focal plane typically call 
out between 7 and 12 lenses. Three or four different lens materials are typically required to correct for dispersion. The 
spectral performance for this many surfaces can dramatically impact system throughput. High performance dual band 
anti-reflection (DBAR) films have been demonstrated2,3 for a number of commonly used substrate materials including 
Germanium (Ge), Zinc selenide (ZnSe), Zinc Sulfide (ZnS), and Barium Fluoride (BaF2). These demonstrations have 
typically been made on flat substrates. In this paper, we discuss the issues of anti-reflection coating lenses and 
optimizing performance of the system. Our approaches to coating design, fabrication and metrology are discussed. 
 
The challenge of coating lenses is in obtaining good spectral performance across the optic despite the sag and curvature 
of the lens. A relatively small difference in height can create a non-uniformity of a few percent across the optic. The 
curvature of the surface can severely reduce film thickness and performance uniformity still further. Two potential 
design strategies include either using a broadband design which is relatively insensitive to systematic thickness variation, 
or more higher performing dual band coatings which are potentially more sensitive. Trade-off studies suggest that, if 
uniformity on the lens can be held to under 10%, the optimized designs, with appropriate constraints, will outperform 
broadband designs.  
 
Fabrication requires attention to uniformity control throughout the deposition process. Modeling of source placement 
and compound rotation allows for uniformity errors across the part to be within 3% for 3 lenses of moderate curvature 
and, therefore, well within the design uniformity budget.  
 
Characterization of optical transmission of the lenses is also key to enabling the process improvements needed to meet 
design performance. Establishing good agreement between the optical performance on witness pieces coated in the run, 
along with the lens and measurements of the lenses, allows for greater confidence in using the witness parts to drive 
process improvements and modeling of system performance. Techniques for characterizing individual lenses and the 
lens assembly are being developed.  
 
Different design techniques are needed for low, medium and high refractive index lenses.  A seven lens design was 
selected for coating development and characterization. The 3rd Gen lens set selected for this demonstration (and shown 
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The number of layers for the first lens set demonstration designs ranges from 13 to 15 and mechanical thickness from 4.7 
to 5.9µm.   
 

Table 2:  Design parameters for the lens demonstration 
Substrate Total Thickness # of Layers Ave % T 

3.5 - 5µm 
Ave % T 7.8 – 

10.5µm 
Ave %T MIR and 

FIR 
Ge 3.66 14 98.4 97.7 98.1 

ZnSe 5.86 15 98.9 97.9 98.4 
BaF2 4.14 13 98.7 97.6 98.2 

  

3. FABRICATION 
Maximizing uniformity for curved substrates is a complex task and involves chamber configuration.  Typically, 
uniformity is optimized experimentally, but since the number of lenses in-hand is limited, the development of a 
deposition model to explore chamber configuration options is justified. Figure 13 presents a model of thickness 
uniformity for a curved part moving in compound rotation about the center of the chamber. The position of the sources, 
crystals and coating plane are presented in the graph on the lower left. The middle graph presents a top down view of the 
chamber presenting the coating flux for the selected material source at the coating plane, and the path followed by the 
center of the parts through the coating plane. The graph on the lower right presents a map of the coating flux and of 
normalized thickness on the part following 100 rotations about the chamber. The graph in the upper right presents a plot 
of radial thickness across the part and the coating plane (assuming simple rotation). The uniformity for this example 
varies by 2.72% across 7” part. Our goal is to keep the modeled coating non-uniformity below 3% and thus within the 
design tolerance. 
 
The coating chamber is Varian 2125 equipped with both resistive sources and a multi-pocket electron beam source. The 
chamber is evacuated using a CTI Cryo-Torr 10 vacuum pump. The parts are held in tools which enable compound 
rotation. Deposition temperature was held at 125o C. Coating runs, with time for temperature stabilization, were about 4 
hours long.  
 

Figure 13: Model of thickness uniformity for a curved part moving in compound rotation about the center of the 
chamber. The uniformity for this example varies by 2.72% across a 7” part. 
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4. CHARACTERIZATION 
All lenses of the same material were coated in the same lot, along with an equal number of 1” diameter plano witness 
slides.  The selected coatings were deposited on both surfaces.  Spectral performance was measured on witness slides 
from each lot, using a Nicolet 460 Protégé FTIR. Transmission and reflection measurements include substrate 
absorption, when present.  In addition, spectral performance of the lenses was measured individually using an OL-750 
monochrometer.  Average transmission for MIR and FIR bands using both instruments is shown in Table 4. 
 
The OL-750 double monochromator with IR glower source, followed by a collimator attachment, was used to generate 
the beam for use in transmission measurements with a HgCdTe detector.  Two scans were made for each lens under test 
(LUT).  The calibration scans were made with an empty beam path between the collimator and the detector.  The 
measurement scan consisted of moving the LUT into the beam path.  A calibration scan was performed before every 
measurement scan.  Transmission is determined by dividing the measurement scan voltage readings by the calibration 
scan voltage readings.  

 
Alignment was achieved by a laser directed toward the exit aperture of the collimator attachment with the retroreflection 
off the LUT used to verify proper alignment.  For lenses, an integrating sphere was required immediately before the 
detector in order to compensate for the irradiance change due to the power of the lens.  Use of the integrating sphere 
results in a 10-3 drop in detector signal level.  For flats, the integrating sphere is not required.   
 
The exit aperture for the monochromator was a 5mm circular aperture.  The exit aperture of the collimator was a 0.5 inch 
circular aperture so that the effects of beam divergence due to the 5mm aperture, as well as the power of negative lenses, 
resulted in a beam that was smaller than the entrance aperture of the integrating sphere.  The same aperture sizes were 
used for the flats. 
 
For lenses, both the calibration and the measurement scans used a 2 second dwell time and a 10 second integration time.  
The calibration scan consisted of three individual scans across the full wavelength range averaged together, and the 
measurement scan consisted of five individual scans.  Measurements were taken with 160nm intervals in the mid-wave 
IR and with a 320nm interval in the long-wave IR.  These intervals are the resolution limit of the monochromator when 
using the 5mm aperture. 
 
For flats, the much larger signal allows for shorter integration times.  The dwell time was 0.5 seconds and the integration 
time was 0.5 seconds.  The calibration and measurement scans still consisted of three and five individual scans 
respectively and the wavelength intervals were unchanged. 
 
Lenses were measured at normal incidence.  Flats were measured at normal incidence individually and as a full set of 
seven.  The full set of flats was also measured with each flat at an angle with respect to the beam axis, once at 15 degrees 
and once at 30 degrees angle of incidence.  The direction of the offset was alternated according to substrate type in order 
to compensate for beam translation. Measurements for all flats and lenses are shown in Figure 14 through Figure 17. 
 
The measured transmission for the full set of seven flats is 82.55% at normal and is shown at normal and at angle in 
Table 3. The product of average transmission of the individual flats is 82.74%.   
 
It should be noted that BaF2 begins to absorb about 10µm and, therefore, transmission is limited. 
 

Table 3:  Measured average % Transmission across 3.5 - 5µm and 7.8 – 10.5µm (using monochrometer).   
Direction of angular offset was alternated according to substrate type. 

Average MIR Average FIR 

All 7 flats at 0° AOI 82.78 82.31 

All 7 flats at 15° AOI 82.30 82.39 

All 7 flats at 30° AOI 79.26 81.51 
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Table 4: Measured Average % Transmission across 3.5-5 and 7.8-10.5µm for DBAR-coated flat witness samples.  The 
parts were 1mm, 2mm, and 3mm thick for  Ge, ZnSe, and BaF2, respectively.  

 OL-750 OL-750 FTIR FTIR 
Witness Sample Average MIR Average FIR Average MIR Average FIR 

Flat Ge 11 97.2 98.0 97.5 98.7 
Flat Ge 12 97.6 98.1   
Flat Ge 16 97.4 98.4   

Flat ZnSe 15 97.7 96.9 96.8 97.9 
Flat ZnSe 97.3 96.3   

Flat BaF2 3 96.4 96.0 96.3 96.1 
Flat BaF2 4 98.1 97.2   

 
 

 
Figure 14:  Measured transmission of coated Ge flats and 
coated and uncoated Ge lenses 

 
Figure 15: Measured transmission of coated ZnSe flats and 
coated and uncoated ZnSe lenses 

 
Figure 16: Measured transmission of coated BaF2 flats and 
coated and uncoated BaF2 lenses 

 
Figure 17: Measured transmission of all coated flats at 0, 
15, and 30° AOI 

 
 
 
 
FTIR measurements made on the flat witness pieces, along with predicted performance, are presented in Figure 18 
through Figure 20.  Measured and predicted performance of the assembly at normal AOI are presented in Figure 21. The 
photographs in Figure 22 and Figure 23 illustrate the assembly measurement technique. 
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as the systematic errors in film thickness can be limited to 6% or so. The highly optimized dual band designs can be 
desensitized by confining out of band regions with only minimal impact on average spectral performance. 
 
Desensitizing the design to variations in film thickness reduces the need to use lens-specific masking during the coating 
process, provided coating uniformity can be achieved using compound rotation. 
 
This effort was the first demonstration of designing, coating, and characterizing DBAR films on a 3rd Gen set of lenses. 
Comparisons between predicted and measured performance were established and provide a baseline of performance. 
Additional lens sets will be coated and performance will be compared to these results in ongoing process improvement 
efforts.    
 
A method of characterizing optical performance on lenses was established. Good agreement between optical 
measurements on flat witness pieces and lenses was demonstrated.  This supports the claim that the desensitization of the 
design and chamber tooling was adequate.  This also allows for greater confidence in using witness parts to drive process 
improvements.   
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