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Abstract 

Narrow band-pass optical interference filters are used for a variety of applications to improve signal 
quality in laser based systems. Applications include LIDAR, sensor processing and free space 
communications. A narrow band width optical filter allows for passage of the laser signal while rejecting 
ambient light. The more narrow the bandwidth, the better the signal to noise. However, the bandwidth 
of a design for a particular application is typically limited by a number of factors including spectral shift 
over the operational angles of incidence, thermal shift over the range of operating temperature and, in 
the case of laser communication, rejection of adjacent laser channels. The trade-off of these parameters 
can significantly impact system design and performance. This paper presents design and material 
approaches to maximize the performance of narrow bandpass filters in the infrared.  

1.0 Background 

Narrow and ultra-narrow (less than 1 nm) bandpass filters can be readily produced on wavelength. 
Figure 1 presents a figure from a previous paper showing measured spectral transmission for filters 
fabricated with bandwidths of 1.0, 0.6 and 0.35 nm1. While the filter bandwidth can be very tight, the 
question of how it will perform in a specific optical system must be considered. The center wavelength 
of the filter will shift with angle of incidence (AOI) and operating temperature.  

 
Figure 1: Laser wavelength scanning data for 1nm wide, 0.65nm wide, and 0.3nm wide bandpass filters. Ultra-
narrow notch bandpass filters can be reliably fabricated, but spectral shift with angle and temperature need to 
be matched to system requirements. (SPIE Paper 9612-21: Sub-nanometer band pass coatings for LIDAR and 
astronomy) 
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In order to prevent the bandpass from shifting off the laser line, bandwidth must be increased to 
accommodate these effects. This creates a design trade-off between filter bandwidth and maximum 
signal to noise and operational parameters such as field of view and temperature. Filter design and 
material choices can mitigate these issues and allow for minimum passband bandwidth. 

Optical interference filters characteristically shift to shorter wavelength with increased angles of 
incidence2. This spectral shift establishes a trade-off between filter bandwidth and the system’s field of 
view.  To illustrate this point, consider the measured spectral performance for a filter set of two narrow 
bandpass filters presented in figures 2 and 3. These filters must pass a specified near-infrared C-band 
laser wavelength with high transmission while rejecting a laser with a 5 nm adjacent wavelength. The 
filter passband is approximately 2.5 nm full width half maximum (FWHM) and the off band rejection is 
OD 4 for the adjacent laser wavelength.  The filters must operate between 0 and 5o angle of incidence 
(AOI). The passband of the filters was designed to be no wider than the angular spectral shift angle of 0 
to 5o. The bandpass center wavelengths are offset to allow the laser wavelengths to pass on the left side 
of the filters at normal AOI and the right side of the passbands at 5 degrees AOI.  A narrower band pass 
would limit the working angle of the system. A wider passband would compromise the signal to noise 
rejection. 

Figure 2: Measured transmission for two 2.5 nm, multi-
cavity bandpass filters at 0 and 5o AOI are overlaid with 
the target laser wavelengths. The application is for free 
space laser communication. The operational angle of 
incidence is 0 to 5o. The laser wavelengths are 1552.3 
and 1548.7.  

Figure 3: The same measured transmission data 
presented in figure 2 are plotted on a log scale to 
highlight filter slope and rejection of the 
corresponding adjacent laser line. The filters provide 
high in-band transmission at 0 to 5o and OD 4 
rejection of the adjacent laser bands.  
 

 

The narrow passband filter can also shift in wavelength with changes in temperature. The thermal shift 
can be stabilized by proper selection of the substrate4, 5. Figure 4 presents the measured spectral shift in 
wavelength for the center passband wavelength for the same design deposited on three different glass 
types. Figures 5 presents the measured thermal shift of this filter set over a temperature range of -50 to 
+50o C. Measured spectral shift was 0.2nm over the 100 degree range. Figure 6 presents a comparison of 
measured transmission using a Cary 5E spectrometer and a scanning laser. The F# of the spectrometer 
causes a slight shift in passband position and bandwidth. Since we can effectively mitigate the influence 
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