

Specifications for Ordering Interference Coatings on Fiber Tips

Omega Optical offers a variety of coatings on fiber tips – including full/partial reflectors, long pass, short pass, band pass, and antireflection designs. It should be understood that the performance of interference coatings depends on the angle-of-incidence (AOI), and that fibers present a distribution of AOIs to the coated tip. Further, Omega's coated tips are hard enough to be connected to other fibers such that the filters are immersed in a glass-filter-glass configuration. The numerical aperture (NA) of the chosen fiber, and how the fiber is connected in an application, will influence filter performance. As a result, we request that customers populate the following check-list to help us meet the goals of a given application. All entries, including questions and incomplete entries, are welcome.

Filter Characteristics¹

(circle one)	LP	SP	BP	Reflector (full or partial)
Cut-on		<u>+</u>		
Cut-off		_ ±		
%T (peak) _			_	
Attenuation λ range				
Attenuation OD				
%R (peak) <u>+</u>				
%R λ range				

Fiber Characteristics²

Numerical aperture (NA) _____ Core diameter _____ Clad diameter _____ Fiber length _____ Fiber material (glass, plastic, chalcogenide) Single mode or multimode at the operational wavelength (circle one) Degree of mode filling (if known) _____ Maximum temperature of jacket _____ Other (PMF, micro-structures, etc)

Fiber Tip Characteristics³

First end connector (FC, SC, LC, SMA, None) Second end connector (FC, SC, LC, SMA, None) If no connector (cleaved, lensed, polished bare ferrule) Which end(s) are to be coated ______

Fiber Configuration⁴

- Coated tip operating in air
- Coated tip connected to an un-coated tip
- Number of expected connections and disconnections

Number of fibers to be coated ______ Fiber supplier _____

Notes

4 – Near zero blue shifts occur if a single mode tip is coated and connected to another single mode tip. The number of fibers allowed in one deposition depends on the fiber configuration (connectorized, cleaved, bundled, etc).

^{1 –} Steep spectral edges and rigorous blocking specifications lead to designs with high physical thickness. We have found that fiber tips can support up to about 6 microns of material. Thick coatings can delaminate and/or allow core to clad leakage. Omega will advise customers regarding the thickness of a proposed filter.

^{2 –} Multimode fiber with high NA leads to high AOI. High AOI causes any interference filter to blue-shift. The observed spectral performance will be a weighted average of the performance at each angle. These spectral shifts can be both modeled and measured at Omega.

^{3 -} Omega monitors the reflectance of fiber tips during deposition. This requires that the uncoated end of the fiber being monitored must be terminated with a connector (preferably FC/PC). If a connectorized end is not appropriate for a given application, Omega will place an extra fiber near the customer's fiber for monitoring purposes.